PIONEER Celebration of the International Day of Women and Girls in Science – Part II Interview with Dr. Maria Victoria Navarro and Dr. Ana Sobota

Written by C. Garcia, with the contribution of M. Faedda, C. Fromentin, G. Hasrack, B. Musig

As part of the celebration of women in science we are encouraged to talk about our experience as women in STEM. With an early career in chemistry, it seemed to me that chemistry is very comfortable in the presence of women actively working in the field. More than half of my classmates were females and the same proportion applied to the professors. I always counted on female role models during my studies that inspired me to be curious, to work hard, and to aspire for the best. However, life as a student is very different from the struggles of a scientist in modern times such as postulating for a permanent position or getting funding for a project. Given our short experience in academia, the best is to ask women who have already passed through all these things and currently work as full-time researchers. For this article, we have interviewed Maria Victoria Navarro from the Instituto de Carboquimica (ICB) in Spain and Ana Sobota from the Eindhoven University of Technology (TU/e) in The Netherlands, two of the PIONEER supervisors who were invited to share their personal experiences.

  • Why did you choose to become a scientist? What moment in your youth made you choose a career in science?

Ana: This is just what I always wanted to be. It never occurred to me that I had enough schooling or enough knowledge and that I wanted to do something else. Becoming a scientist wasn’t a conscious decision, the curiosity to learn more and to understand never died.

Maria Victoria: In my case, the science career was always there. From school, the science, mathematics and natural sciences subjects were the ones that interested me the most and also I obtained the best qualifications. As the science topics became more specialized (physics, chemistry, biology and more complex mathematics), they continued to attract me a lot and the image of the laboratory and the research in chemistry began to appear. However, it seemed to me a job that only extraordinarily intelligent people like Santiago Ramón y Cajal or Marie Curie could access.

Lately, I began my training in chemistry at the university that allowed me to acquire knowledge about the transformation of the matter from which we are made and the world that surrounds us, the reason for different natural and production processes, the change of some compounds into others and the behaviour of the materials. I thought to graduate in Technical Chemistry specialty that joined chemistry and mathematics, very close to Chemical Engineering. At that moment, I was focused to follow my career in the industry.

However, when I was finishing my studies at the University, the possibility arose to do a PhD in chemical engineering, that is, to take up the idea of research in a laboratory applying the studies I had carried out. I did not hesitate.

  • Why did you choose plasma physics? What impact do you expect make in the scientific world by working in plasma physics?

A: I chose plasma physics because I had to pick a mentor for my diploma thesis, and the professor doing plasma was the nicest one around. Afterwards I really found it beautiful.

You create impact as you go along. As a scientist, you always stand on the shoulders of people who came before you. Maybe they’re not extremely visible as individuals, but every discovery is a building block that supports someone else’s later work. The new knowledge I created will be the shoulder someone else stands on. In addition, I educate the next generation of engineers and scientists. If you want to measure impact, I think that is much more valuable. My own scientific discoveries cannot be compared with the sum total of the future scientific discoveries of the people I helped educate. Actually, seeing your student succeed based on something you taught him/her is one of the best feelings in this job.

  • In ten years, what do you hope to have accomplished in terms of your work? What is your goal as a scientist?

A: My goal as a scientist is to create good science – reliable new knowledge. About 10 years in advance… my plan in terms of science is always the same: find a niche in your own field which you can advance significantly beyond the state of the art. Currently this is developing diagnostics for plasma-surface interactions, which are suitable for the specificities of non-thermal atmospheric pressure plasmas. There is a lot to discover in this field.

MV: My goal as a scientist is to reduce the production of wastes by using them to produce energy without polluting. In this way, I would like to contribute to preserving the environment by helping to improve the progress and future of people.

In 10 years I would like to have developed the necessary technology for a process that allows the use of CO2 to generate methane with high energy efficiency. I would like to develop it at all levels, from the concept development to the proof of concept, the process validation at different scales and the development of the production prototype.

  • What were the biggest obstacles or challenges you had to overcome? Did you ever have the impression that it would be easier or harder if you were male?

A: The hardest time I had in terms of career was in securing tenure. Switching gears between the wonderful world of scientific discovery during my PhD and postdoc projects and the world of management and especially funding is something I had some trouble with. Getting that first funding was stressful. I think the biggest challenge were cultural differences. I don’t live and work in the culture I was brought up in. During the PhD project everyone is friends with everyone else and cultural differences are fun. When you have to start competing for money in a culture that is not yours, you start noticing that your system of values is unusable. (For example, in my own view the biggest sin you can commit in The Netherlands is to be inefficient. That means that long explanations annoy your audience, because you’re wasting their time. That means that a project proposal which explains things in minute detail is not even going to get read, even though it might be a great scientific idea. This is in complete contrast to my own culture.) This was a bigger deal for me than the gender issue. I don’t think it would have been easier for me if I was male.

MV: There have been several challenges that I have faced in my scientific career such as defending the PhD, doing postdoctoral stays in foreign institutions or passing exams to obtain a research position. Currently, the biggest difficulty I find is obtaining funding for research and PhD students. All these challenges have to be faced by men and women in the same way and the success is based on presenting interesting scientific developments.

In my opinion, nowadays the Spanish public research system is equally opened to the participation of men and women. From my personal experience, one of my supervisors was a brilliant woman scientist that reached the highest research level in the organisation. Actually, the research permanent staff in my research institute has a balanced representation of women and men.

  • What kind of prejudices, if any, did you have to face? How did that make you feel? Were you able to overcome these?

A: There are always prejudices, everyone has them. However, it is really difficult to say with certainty that someone’s decisions are being influenced by prejudice. When I feel unfairly judged or unfairly treated because of cultural or gender differences, I try to get a strong foothold on something else and not waste too much time on the prejudiced person. Of course, being treated unfairly hurts, but staying hurt and stuck in that situation hurts more.

MV: I do not remember myself facing any kind of general prejudices. Most of the people involved in science usually will wait to see your actions before creating themselves an idea of you.

  • What have you seen as changes (major or minor) that have happened in terms of women in science? For example, opportunities for advancement, funding, tenure, salary differentials, etc.?

A: The Netherlands is one of those countries with a very low percentage of women in physics and the number gets miniscule if you look at the positions at the top, which would be the position of full professor. However, this is changing very quickly in the last years. This is a side of the Dutch culture that I admire. Once they managed to recognize the problem, they put immediate efforts on several levels to rectify it. Just to give you an example, at my own department I believe that the number of female scientific staff has more than tripled in the last few years.

On a larger scale, both in space and in time, the gender issue is progressing slowly, but it is getting better. I don’t think we’re all on equal grounds regarding any of the criteria from the question, however we’re doing better than before. For example, my grandmother would never have been able to be a scientist, even though she was a very clever woman, but I am perfectly able to be an associate professor at a university. I think it’s important to accept that gender inequality is in many cases a cultural matter and should be addressed on all levels, from family to top managerial positions. For example, while there are people telling (young) women that science is not for them, that it’s not feminine, that they aren’t smart enough and that they should be pretty, timid and agreeable instead of making up their own minds, the problem won’t be solved.

MV: In my work environment in the public National Research Council, opportunities for improvement are the same for men and women, obtained through the recognition of scientific merit and I don’t know direct salary differences between women and men in the same working scales. During my years in the Instituto de Carboquímica, I have seen the participation of scientist women in managing positions like four Institute directors. In addition, I have seen other managing positions actually occupied by women like Regional delegate, Area coordinator or President of CSIC. There are also examples of women scientist dedicating part of their time to apply their knowledge of the science system and its needs into politics, trying to improve the government management of the science field.

However, I know it could be different in other scientific environments. The recognition of merits may have a factor estimated by evaluators that can be influenced by their personal conception of the different qualities of men and women. To reduce the influence of this point, I have seen many initiatives regarding the inclusion of qualified women in evaluation boards for thesis PhD, staff selection or project selection.

  • In your opinion, which changes, if any, are needed in the scientific system to be more attractive to women in science and possible future scientists?

A: Maybe it’s just a matter of critical mass. As soon as there is enough diversity in an environment, this diversity tends to sustain itself, whether it concerns women or internationals or people with background in poor social class. In short, we’re on a good route. The present female role models are in the position to attract more female scientists and the system will change itself. Perhaps the next frontier are indeed students whose families are rooted in the poorer social class. They have to overcome a large barrier just to invest time into studying instead of getting a full-time job as soon as possible.

MV: One of the aspects of the Scientific System that could make it more attractive to women is to increase the visibility of the actual participation of women at all research and managing levels. As I said, the scientific system is open to the participation of women and to have this knowledge from the school to the general society could make it more attractive to women. I want to highlight that there are also women scientist who are actively participating in actions to increase the visibility of the women in science, for instance AMIT (Asociación de Mujeres Investigadoras y Tecnólogas) There is important work to do in social, educational or cultural aspects that could provide more general information on the participation of women in the scientific system.

  • Thinking in terms of careers, what words of wisdom would you offer to young women considering entering the field of science?

MV: The sciences careers offer fields of work that maintain and improve the quality of life, directly in industrial production processes or in research to solve health, food, energy or environmental problems. It is a wide range of possibilities in constant evolution in which the most personal interests can easily be included.

A: Don’t worry about prejudice. Spend as little time as you can on people who treat you unfairly and find a way around them. Life is too short.

Many thanks to Ana Sobota and Maria Victoria Navarro for their participation and for their experience and insights on the topic.

This initiative for the International Day of Women and Girls in Science has brought us ESRs to start a discussion, with sharing of ideas, opinions and experiences. We have just scratched the surface of the theme we are touching, therefore please wait for one more insightful perspective on the matter of inclusivity and representation in research and science. Coming soon!

Worth having a look: Pioneer Universities Gender Equality webpages

Sorbonne Université

TU/e Eindhoven


Tecnico Lisboa

AGH Krakow – no gender equality webpage

University of Bucharest – National Gender studies ban (

University of Trento

University of Antwerp – Master in Gender studies but no committees for gender equality

University of Liverpool


University of Caen – no webpage dedicated

University of Zaragoza

University of Paris-Saclay

PIONEER Celebration of the International Day of Women and Girls in Science – Part I

Several figures have been used to describe the gender gap in academia and research, from “leaky pipeline” to “glass ceiling”. But what are the experiences of girls and women in the scientific community? We have tried to gather together our perspectives as young women starting our careers in the science, technology, engineering and mathematics (STEM) field, reflecting on the past formative years and wondering about our future prospects.

It is undeniable that our childhood and school years have a great influence on our interests and on the person that we become as adults. There is still a considerable disparity between the education provided to male and female children around the world. Patriarchal and obsolete gender roles are still engraved in the way society teaches young boys and girls: from the toys that we are given to the life lessons we are told. This lack of equal education is leaving women in a skills crisis when it comes to STEM and high responsibility jobs [1]. Another issue is the under-representation of successful female role models in science. Let’s be honest, at most people would be able to name Madame Marie Sklodowska Curie if asked on the street to name a famous female scientist. Young girls do not have a mirror to seem themselves in when it comes to dreaming of becoming a researcher. As a consequence, women are unmotivated to try a career in STEM, feeling ashamed to speak up about their passion and discriminated against in case they do.

One of us had a strong model growing up: her grandmother who, in the mid-1900s, chose a career in physics, facing a world that was encouraging women even less to pick their own path. We recognize now the importance of representation: it makes everything you imagine obtainable and possible.

With our short experience as PhD students, we would like to send out a few words of encouragement to girls who are interested in science and research. But first, let’s have an idea of the situation we are delving into.

More than 500 000 people were studying Science (Biology, Chemistry, Physics and Mathematics) in the European Union (EU) in 2018 at a Bachelor or Master level (or equivalent). Overall, women were under-represented, accounting for roughly 46% of all Science students in the EU. However, this number is not representative as there is a strong disparity amongst the subjects of study. Indeed, less than 30% are female students in Physics against more than 60% in the field of Biology.

In Figure 1, the share of female students in different fields of Science in 2016 and 2018 is represented for the countries that are part of the Pioneer consortium. Among the EU Member States, Romania and Poland stand out with more than 50% of female students in the four fields considered. In contrast, the share of female Physics students is less than one fifth in Belgium (18.5%) and the Netherlands (15.7%). Excluding Romania and Poland, the highest shares of female students in Mathematics were recorded in Italy (>50%) and Portugal (>40%).

Concerning the evolution between 2016 and 2018, the general trend would suggest an increase of the number of female students in Science. The field mostly concerned by this increase is the field of Physics, with a growth in all the countries considered except Ireland, Italy, and Poland.

Figure 1: Share of female students in different fields of Science in 2016 and 2018 for the countries that are part of the Pioneer consortium. Data source: [2]

When discussing the gender gap the term STEM is mostly used and refers to subjects such as Astronomy, Biochemistry, Biology, Chemical engineering, Chemistry, Computer science Electrical engineering, Mathematics, Physics, Statistics… the issue  of female underrepresentation and lack of female role models in STEM subjects has been discussed extensively and is often blamed for steering women away from studying these subjects. Indeed, it reinforces the perception that women will feel isolated and excluded in these typically male-dominated environments. In order to encourage more female students to choose a STEM degree, universities, employers and governments have also introduced policies aimed at increasing the proportion of women but the effects of these policy instruments are difficult to assess and there is still a long way to go before equality is reached. Universities can also fight the gender gap by creating new interdisciplinary scientific fields as it was shown that women would be more drawn to this type of research. Finally, efforts should be made to increase the exposure of positive female role models both in schools and in universities.

We have discussed the disproportion between men and women in STEM at BSc and MSc levels. These numbers remain below 40% at doctoral level, where we find 37% and 39% of female PhD students and graduates, respectively [3]. If we compare these data to the corresponding shares in all fields, we see that European early stage researchers are almost reaching parity on a gender basis, while women in science and technology suffer from a drop of 11 and 9 percentage points respectively, in the same positions.

There are however differences between all EU Countries, with some doing better than others, as well as more marked disparities depending on the discipline within the broad STEM category. For instance, physics and engineering have the worst female participation, while the number of women in natural sciences, biology and chemistry is increasing at a faster rate, mirroring the same trends we saw for undergraduate and postgraduate students.

How are universities and institutions tackling this problem? Gender equality has been included among the 17 Sustainable Development Goals in the 2030 EU Agenda. We have examined the websites of the 15 Universities taking part in our Consortium, to have a general picture of the situation in Europe. The majority of them has a dedicated webpage on gender equality and diversity, where its policies and resolutions are listed. Only two Universities (U. of Trento and U. of Zaragoza)[4][5] have an actual Monitoring Center that provides public progress stats on a yearly basis, confirming the need to fill huge data gaps. We strongly encourage all universities to take a leaf from them, to be more effective in their actions for the achievement of equality. A special mention goes to the University of Liverpool for its LivWiSE project (Liverpool Women in Science and Engineering society) [6], for their outstanding work on promotion, networking and event organization. We really recommend you to visit their webpage and youtube channel.

Across all the EU Marie Sklodowska-Curie Actions (MSCAs) funded between 2014 and 2018, the average presence of women accounted for 40,9%. Specifically, the Doctoral programmes MSCA-ITN (Innovative Training Networks) registered 42,5% presence of female researchers. In the frame of Pioneer, only 1 out of 3 ESR is female, which is way below the general share.

To conclude, a doctorate is a period of intensive training and the beginning of a research career in an elective field. Women must not be cut out from the technological and scientific advancement and from shaping tomorrow’s world. Finally, “there is overwhelming evidence that diverse teams are more creative and productive”, as Frank Baaijens, Rector of Eindhoven TU, declared, speaking about the University’s resolutions to increase women’s and minorities’ representation in academia. [7]

Figure 2: Distribution of men and women across all Actions within MSCA, 2014-2018. [8]

With this overview of the current situation of gender gap in university, we are looking ahead at the future scenarios and prospects for our professional careers. Nowadays, it can be said that finding a proper job and becoming a successful professional is one of the biggest challenges in one’s life. In today’s society, based on living cost, usually in each family both parents are employed. With progress in education and industry, unlike the previous generations, the last two generations are well educated and the competition for employment has increased. But the question is: are all these opportunities equal for women and men? Statistics show that in EU (Schengen Area) the employment rate of men is 11.8 percentage points higher than for women, despite the fact that the population of women in working age is 51% and for men is 49% [9]. Moreover, women are generally paid less with hourly earnings on average 14.8 % below those of men [10]. It seems that even in developed countries, there is still gender inequality in the workplace.

Compared to men, especially in technical positions, women are still not considered as experts. For example, imagine there is a job opportunity as an engineer in a company, there are two candidates: one woman and one man with exactly same credentials. Most likely, the man is going to be chosen based on prejudices that picture male professionals as more suitable and more educated in STEM field. Of course, with such point of view coming from society, women are less confident and usually underestimate themselves. Just imagine in such environment how women are under pressure to prove their perfection. Even if they are selected for a job, they always have these thoughts in mind that they should prove themselves to their peers. A study showed that, in the same workplace if you ask a man and a woman what they are mostly thinking about during their work is that the man thinks about improve his work because he is sure of his perfection in the work and the woman thinks about to compete with other colleagues just because of lack of confidence.

Just being a woman is a big challenge to face inequalities, so you can imagine how much harder is to be a successful woman. It’s still long way to show the societies that being a successful woman is not just being a good mother or wife. Women’s share in science and industry is much bigger than what we think. We have to rely on our set of skills, our solid preparation and our passion to show the world that these gender biases are outdated and a new generation of girls in STEM is ready to tackle the challenges of tomorrow.

Stay tuned for the second part of the blogpost in honor of the International Day of Women and Girls in, we will be reflecting on these important topics with some of the PIONEER supervisors.

This text was written by Beatrice Musig, Chloé Fromentin, Marzia Faedda, Golshid Hasrack and Carolina Garcia.


[1] “,” [Online].

[2] Dataset ‘Pupils and students enrolled by education level, sex and field of education’ “” (Accessed on 31/01/2021)

[3] “,” [Online].
[4] “,” [Online].
[5] “,” [Online].
[6] “,” [Online].
[7] “,” [Online].
[8] “,” [Online].

[9] [Online].

[10] [Online].

Extra references: Pioneer Universities Gender Equality webpages

Sorbonne Université

TU/e Eindhoven


Tecnico Lisboa

AGH Krakow – no gender equality webpage

University of Bucharest – National Gender studies ban (

University of Trento

University of Antwerp – Master in Gender studies but no committees for gender equality

University of Liverpool


University of Caen – no webpage dedicated

University of Zaragoza

University of Paris-Saclay

Plasma Agriculture

       I.            Introduction

Figure 1: Cornfield, taken from

Nowadays, agriculture is facing numerous problems due to the continuous world population growth, the environmental pollution, and climate change. In particular, the global population growth leads to an increased food demand and climate change has caused significant reductions in crop yield. According to the United Nations Food and Agriculture Organization (FAO), the main reasons for the global food shortages would be climate change, fast development of industrialization and urbanization. Due to the lack of cultivable land, the only course of action to address the food shortage is to increase the crop yield in an economically viable way ensuring the quality of the agricultural products and the preservation of resources and habitats. The current situation calls for agricultural research to ensure food security while keeping detrimental effects of agriculture on the environment to a minimum.

By improving the seed germination and plant growth we could meet the world population food needs. Indeed, the major cause of low germination of seeds of various plant is often connected to the seed surface and soil contamination with microorganisms and fungi. Until now, conventional techniques such as irrigation, fertilization, and crop protection have been implemented in order to increase the production. However, these methods present economic and environmental disadvantages. Increasing agricultural productivity, taking into account protection of the environment, must therefore be addressed with novel approaches. One such approach is to use Low Temperature Plasmas (LTPs) in agriculture (“Plasma Agriculture”), whereby plasma can increase the yield without demanding more water and/or more chemicals.

LTPs are ionized gas containing charged species and neutrals, in different excited states, in strong non-equilibrium due to electromagnetic and/or collisional interactions. They can be generated in different gas mixtures using microwaves, radio frequency, continuous, pulsed, or alternative current in various configurations like dielectric barrier discharge (DBD), atmospheric pressure plasma jet (APPJ), and corona discharges. LTPs are non-equilibrium plasmas that have high kinetic energy electrons, but low kinetic energy atomic and molecular species. On the one hand, the terms “low temperature” refer to the electron temperature being in the range of electron volts which is high enough to produce a variety of reactive species and UV radiation. On the other hand, the heavy particles (ions, molecules) remain at low temperature which prevent LTPs from damaging organic materials.

In the White paper on the future of plasma science in environment, for gas conversion and agriculture2 Ronny Brandenburg et al showed how plasma technology including plasma agriculture can contribute to address the different challenges that our society is currently facing, namely, climate change, environmental pollution control, and resource utilization efficiency, as well as food security, sustainable agriculture, and water supply.  A review3 by Nevena Puač et al reports the state‐of‐the‐art of LTPs applications in the complete food cycle, that is, in treatments of seeds, plants, and food. This work is an overview of the wide variety of applications of LTPs in agriculture and food processing and presents promising results published in many studies. Finally, Bhawana Adhikari et al4 summarized prior experimental studies showing the activation effects of cold atmospheric or low-pressure plasmas effects on seed germination, plant growth and development, and plant sustainability including flowering and fruit production.

     II.            Soil and plant treatment

A key parameter for productivity in agriculture is the remediation of soil. Indeed, an important issue is the overuse of chemicals used in agriculture for fertilization or plant protection from various insects and viruses. Plasmas could provide an alternative ecological and low‐cost technology for decontamination and modification of soil thanks to its radicals, being very reactive with less effects in the long term than conventional chemicals. The challenge in soil remediation is to enable a selective treatment to reduce fungi and detrimental bacteria while preserving or enhancing the activity of nitrogen‐fixing bacteria.  In fact, plasma can meet these challenges and can as well protect from detrimental outcomes of continuous cropping. The effects of plasmas are moisture and soil material dependent.

              Plant treatment is also a possibility and the earliest studies on the effects of electricity on plants date back to the XVIIIth century. Moreover, non-equilibrium atmospheric-pressure plasma sources have been applied to actual agricultural crops for the inactivation of microorganisms (disinfection) and some of these sources are reviewed in an article from Masafumi Ito et al5.

       I.            Plasma treated Water

The use of plasma‐activated water (PAW) rather than direct plasma treatment is, also, a possible approach. Generally, PAW is produced by arc or gliding arc discharge (usually in air) on water surface. It is widely agreed that the antimicrobial properties of PAW derive from the combined effect of a high positive oxidation reduction potential (presence of H2O2) and a low pH, affecting the seed germination and plant growth. Several studies showed that PAW captures atmospheric nitrogen and acts as a fertilizer with similar effects to a conventional one. Nitrogen, especially in the ionic form NO3, is indispensable for plant growth. According to K Takaki et al6, PAW could double the nitrogen content in the leaves of plants, increase the leaf area and dry weight, and reduce the bacterial density by five orders of magnitude in hydroponic water. Indeed, the growth rate of the plants increased with the plasma irradiation time and the nitrate and nitrous nitrogen ions were produced by the application of plasma irradiation to the drainage water improving the plant growth rate. Finally, PAW is an environmentally friendly and cost-effective disinfectant. It was also suggested that the active species could be produced by the discharge in the liquid phase through photolysis by plasma emitted UV photons.

     II.            LTP in seed treatment

Low and atmospheric pressure plasmas such as DBDs, RF‐ and MW‐sustained plasmas, and gliding arcs under different conditions (mostly operating in air, but also in other gases) have been applied, either directly to the seeds or by remotely using the products of the gas discharge. The effects of plasma treatment in seeds are assumed to be induced by the plasma‐generated reactive oxygen and nitrogen species. The decontamination of seeds, e.g., the removal of pathogenic fungi, and bacteria as well as the insecticidal activity against larval and pupal stages of pests and the enhancement of their germination by treatment with nonthermal plasmas have been demonstrated in several studies. Plasma treatment can have a variety of effects on the morphology of seeds due to its complex interaction with organic materials and living cells.

Figure 2: Dill (Anethum graveolens) seeds treated with dielectric barrier discharge (DBD). Small photo: DBD with plasma turned on, ring‐shaped electrode configuration. Taken from reference7. Reproduced with kind permission by the authors and Biblioteca Horticultura.

Plasma treatment generates UV radiation, radicals and chemical reactions, which can play a role in dormancy breaking. Dormancy is the inhibition of germination under conditions (temperature, humidity, oxygen, and light) that are favorable to germination. It is a natural seed property enabling the species to reproduce and thus to survive. This can be caused by various factors such as temperature, light, water, impermeability of the seed coat, lack of supply and activity of enzymes and external inhibitors.

Another consequence of the plasma treatment is the modification of surface properties. The change of wetting properties and structure of the coat increases the water uptake and the permeability of nutrients, and it can accelerate the development of the roots. Many studies have suggested that a plasma-induced faster seed germination and increased seedling growth rates might be associated with the water uptake of seeds. Seeds in contact with cold plasmas are exposed to an attack by oxygen radicals and are bombarded by ions resulting in seed coat erosion. The altered seed coat could increase the hydrophilic ability of the seed and the oxidation of the seed surface changes its wettability eventually improving the water uptake of the seed. For instance, Jiang J. et al8 showed that cold helium plasma treatment, at atmospheric pressure, improved seed germination, growth, and yield of wheat. On the contrary, Volin J. et al9 reported that fluorocarbon plasma treatments at low pressure inhibited corn and bean seed germination. The most plausible explanation is the modification of seed coats via plasma-deposition of hydrophobic materials that reduces the water uptake, and thus leads to delayed seeds germination. The seed plasma treatment (exposure time, gas carrier, plasma input power, etc…) must be optimized for each type of seed.

  III.            Experiment on seed treatment and Plasma Activated Water

In their work Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment10, L. Sivachandiran and A. Khacef studied the combined effect of non-thermal plasma treatment of water and seeds on the rate of germination and plants growth. For this purpose, they used a dielectric barrier discharge in air under atmospheric pressure, at room temperature.

Figure 3: Long term effect of Plasma Activated Water (PAW) and plasma seed treatment on plant growth. Images of (a) tomato and (b) pepper plants on 60th day after sowing. (Tw=Tap Water) (P10=10 min plasma-treated seeds). Taken from reference10. Reproduced with kind permission by the authors.

As can be seen in Figure 3, the results show a positive effect of the seeds and water plasma treatment for tomato and pepper plants. We can note that in the case of untreated tomato seeds, there is no significant difference in plant growth when watered with Tap Water (TW) or Plasma Activated (30min) Water (PAW-30) whereas for untreated pepper seeds a significant growth is observed when watered with PAW-30 as compared to TW. Therefore, they concluded that the effect of plasma treatment of seeds and water on plant growth probably depends on the nature of the seeds. Finally, for longer exposure times of seeds and water to the plasma a detrimental effect was observed therefore the plasma treatment time must be optimized for each seed.

LTPs potentially offer novel ways to enhance seeds germination, plants growth, crop yields, to protect crops thus increasing the production with less impacts on the environment. The effects of cold atmospheric or low pressure plasma on plant growth, development, and sustainability have been verified by abundant experimental data. Indeed, many papers have reported promising results in this wide variety of applications. However, available experimental data are biased toward laboratory conditions and evidence for the applied usage of plasma in agricultural fields and facilities is still lacking. Besides, more information about the modes of plasma action on plant production and sustainability is necessary to optimize and upgrade the plasma systems and applications. For this purpose, collaborations between plasma research scientists, plant biologists, agricultural experts, and food technologists will be needed to clarify the key mechanisms underlying plasma‐agricultural applications, and with the aims to understand, control, and scale up these new processes.

This text was written by Chloé Fromentin


1 Sunset over the corn field. [online]. Available at: [][Accessed 27 January 2021].

2 Brandenburg, R., Bogaerts, A., Bongers, W., Fridman, A., Fridman, G., Locke, B., Miller, V., Reuter, S., Schiorlin, M., Verreycken, T. and Ostrikov, K., 2018. White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Processes and Polymers, 16(1), p.1700238.

3 Puač, N., Gherardi, M. and Shiratani, M., 2017. Plasma agriculture: A rapidly emerging field. Plasma Processes and Polymers, 15(2), p.1700174.

4 Sivachandiran, L. and Khacef, A., 2017. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Advances, 7(4), pp.1822-1832.

5 Masafumi Ito, Takayuki Ohta, and Masaru Hori, 2012. Plasma Agriculture. Journal of the Korean Physical Society, Vol. 60, No. 6, pp. 937∼943.

6 Takaki K., Takahata J., Watanabe S., Satta N., Yamada O., Fujio T., and Sasaki Y., 2013. Improvements in plant growth rate using underwater discharge. J. Phys.: Conf. Ser. 418 012140.

7 Schnabel U., Andrasch M., Stachowiak J., Weihe T., Ehlbeck J., Schlüter O., 2017. Non‐thermal atmospheric pressure plasmas for post‐harvest application of fruit and vegetable sanitation. [] (Accessed on 27 January 2021).

8 Jiang, J., He, X., Li, L., Li, J., Shao, H., Xu, Q., Ye, R. and Dong, Y., 2014. Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat. Plasma Science and Technology, 16(1), pp.54-58.  

9 Volin, J. C., Denes, F. S., Young, R. A. & Park, S. M. T., 2000. Modification of seed germination performance through cold plasma chemistry technology. Crop Sci. 40, 1706–1718.

10 Bhawana Adhikari, Manish Adhikari, and Gyungsoon Park, 2020. The Effects of Plasma on Plant Growth, Development, and Sustainability.  Appl. Sci., 10(17), 6045.

General Assembly 2021

The new year has just started but we are already in full action again. On January 11 2021 the Supervisory Board gathered online for the General Assembly 2021. Topics were the achievements of the last year and lessons to be learned as well as the planning of 2021. We look optimistic into the future and expect more great work within PIONEER.

UNEP Emissions Gap Report

The UNEP Emissions Gap Report of this year is available! Have you heard about it? It is a yearly review showing the gap between where greenhouse emissions are predicted to be in 2030 and where they should be to avoid the worst impacts of climate change!
This year’s report, being released in the context of the COVID-19 pandemic, is calling on governments to use the recovery strategies as a way to recreate our societies aiming to be more sustainable, resilient and inclusive. But what does it tell us?
First, the emissions are slowing but we still do not know if they are close to a peak. Growth in global greenhouse gases (GHG) emissions has averaged 1.4% / year since 2010, lower than the 2.4% / year from 2000 to 2009. However, dynamics at national level can differ.


Also, the gap (without COVID-19 data) is unchanged in the 2020 review since policy adjustments by the major emitters were minimum. This means that, without taking COVID-19 into account and following the current policies, we may have a mean temperature rise of 3.5°C by 2100.


This increase may be reduced if the net-zero GHG emission goals recently announced by the European Union and others are fulfilled, but the combined effects of all these goals may only cut it to 2.5 – 2.6° C, still higher than what we need (about 1.5 – 2° C).
And how did COVID affect the scenario? Projections show that CO2 emissions reduced 7% in 2020 (range: 2–12%). This is very important and unprecedented. For example, the 2007-2008 global financial crisis led to a 0.9% reduction in CO2 emissions.


Of course, nobody believes this is a solution, because how countries respond in the years after 2020 is more relevant, since previous analysis showed that emissions often rebound after crises. Thus, what we do from now on is what matters.
For example, if we followed the current trend (during the pandemic) we would have a decrease in 2-4 GtCO2 e by 2030. However, the rebound may cause a smaller reduction or even an increase! On the other hand, a reduction of 15 GtCO2e may be reached with a sustainable recovery.


We are behind the schedule but COVID-19 recovery strategies can be used to help. Governments and society, acting together, can rewrite our systems and behavior towards a more sustainable society. Especially now, after being reminded how fragile we are. For references and the full report.

This text was written by Jairo Barauna.

Annual Evaluation Meeting

From November 30 until December 3 the consortium came together online for the annual evaluation meeting. During the first three days the ESRs presented their scientific work during the last year before facing the questions of their respective supervisory committee. Even though traveling is limited due to the pandemic the ESRs showed that they could already achieve quite a lot.

The last day of the meeting focused on the general course of PIONEER to ensure its succeeding also in the future.

Workshop “Plasma Science & Entrepreneurship”

Originally planned to take place at the Ruhr University Bochum, Germany this two day workshop on November 2 and 3 was quickly transformed into an online event. Various supervisors of PIONEER participated and gave presentations: Vasco Guerra, Xin Tu, Gerard van Rooij and Richard Engeln. But also the ESRs were represented by Chloé Fromentin who talked about “Kinetic mechanisms in CO2 – O2 plasmas: Development of an reaction mechanism”.

Welcome to Agnès Dudych!

Recently, Agnès Dudych from Sorbonne University took the position of project manager of PIONEER. On October 23 there was a first online get-to-know with the ESRs. A meeting with the Supervisors will follow soon. Welcome to the project Agnès!

Methane, why is it important?

Methane is the simplest hydrocarbon composed of a carbon atom bonded to four hydrogen atoms forming a tetrahedral structure. This stable molecule has a global warming potential around 86 times stronger per unit mass than CO2 on a 20-year time scale. Although methane’s emissions are less abundant than carbon dioxide emissions, it is important to address this problem.

Naturally, CH4 emissions occurs daily from methane’s earth cycle coming from wetlands, oceans, permafrost and underwater reserves. Recently, an active leak of methane of sea-bed was discovered in Antarctica rising concerns about this natural contribution of the already unbalanced atmosphere. However, anthropogenic activity has a much larger contribution as we will see next:

 Agriculture and waste management sectors are the primary sources of methane emission counting for 227 Tg per year in 2017. This is equivalent to 277 million tons of methane released to the atmosphere (figure 1). Since farming involves the breeding of domestic livestock such as cattle, swine, sheep, and goats who produce CH4 as part of their normal digestive process. Also, when animal manure is stored or managed in lagoons or holding tanks, CH4 is produced. Methane is also generated in landfills as waste decomposes and in the treatment of wastewater. CH4 is also generated from domestic and industrial wastewater treatment and from composting.

Figure 1. The global methane budget for year 2017 based on top-down methods for natural sources and sinks, anthropogenic sources, and mixed natural and anthropogenic sources. (extracted from ref. 1)

Fossil fuel and production also contributes to the overall emissions. Methane is the primary component of natural gas and is emitted to the atmosphere during the production, processing, storage, transmission, and distribution of natural gas and the production, refinement, transportation, and storage of crude oil. Coal mining is also a source of CH4 emissions.

Both sectors, agriculture and energy production, require active and strong mitigation actions. Agriculture requires a gentler and rationed production, we all want a nice grilled steak from time to time, right? Nevertheless, different approaches are taken to address methane conversion.

Generally, methane is converted to synthesis gas via steam reforming. The synthesis gas composed of H2/CO (best known as “syngas”) serves as a feedstock of many chemical processes, e.g., Fischer–Tropsch and methanol synthesis. However, the reaction conversion to syngas is highly endothermic and requires temperatures up to 900°C. By contrast, the partial oxidation of methane to synthesis gas can proceed to a more moderate temperature (around 500°C). Another approach is the utilization of CO2 for the oxidation of methane known as dry reforming. Carbon dioxide conversion releases atomic oxygen that serves for the oxidation of methane whilst methane serves as a source of hydrogens leading to the formation of syngas or C2 compounds. Also, this reaction is thermodynamically unfavorable but in this way two greenhouse gases are transformed to useful chemicals! Here is where catalysis has taken a step to promote the reaction at lower temperatures or increase the selectivity. Metal oxides as MgO or CeO2 in combination with metallic loadings of transition metals like Ni, Pt, Pd, etc. Nonetheless, this approach has significantly improved the outcome but recent studies have used catalytic process in conjunction with plasma or an electric field leading these reactions at a milder condition. Given previous results using low temperature plasmas like Dielectric Barrier Discharges, cold plasmas are a promising route for methane conversion to a sustainable chemical industry.

This text was written by Carolina Garcia

  1. Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., … & Tsuruta, A. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 15(7), 071002.
  2. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015. (2020, September 11). US EPA.

Training at online Plasma School

For various reasons not all ESRs were able to attend last year’s Plasma School at Physikzentrum Bad Honnef, Germany. Therefore, every ESR who missed the opportunity last year, joined the online Plasma School from 5-15 October 2020. So despite Corona now all ESRs posses the same plasma physics knowledge!