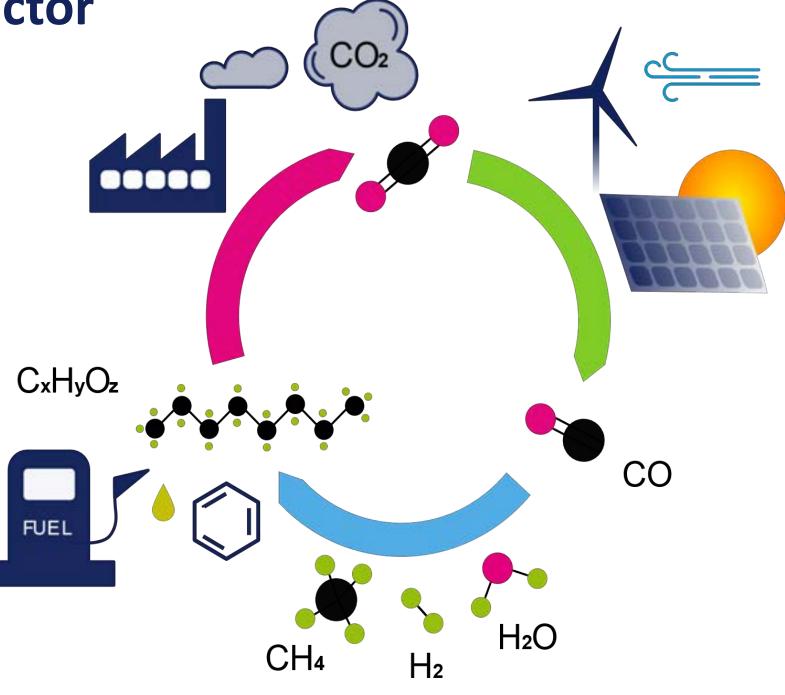


785. WE-Heraeus-Seminar Non-Thermal Plasmas for Sustainable Chemistry

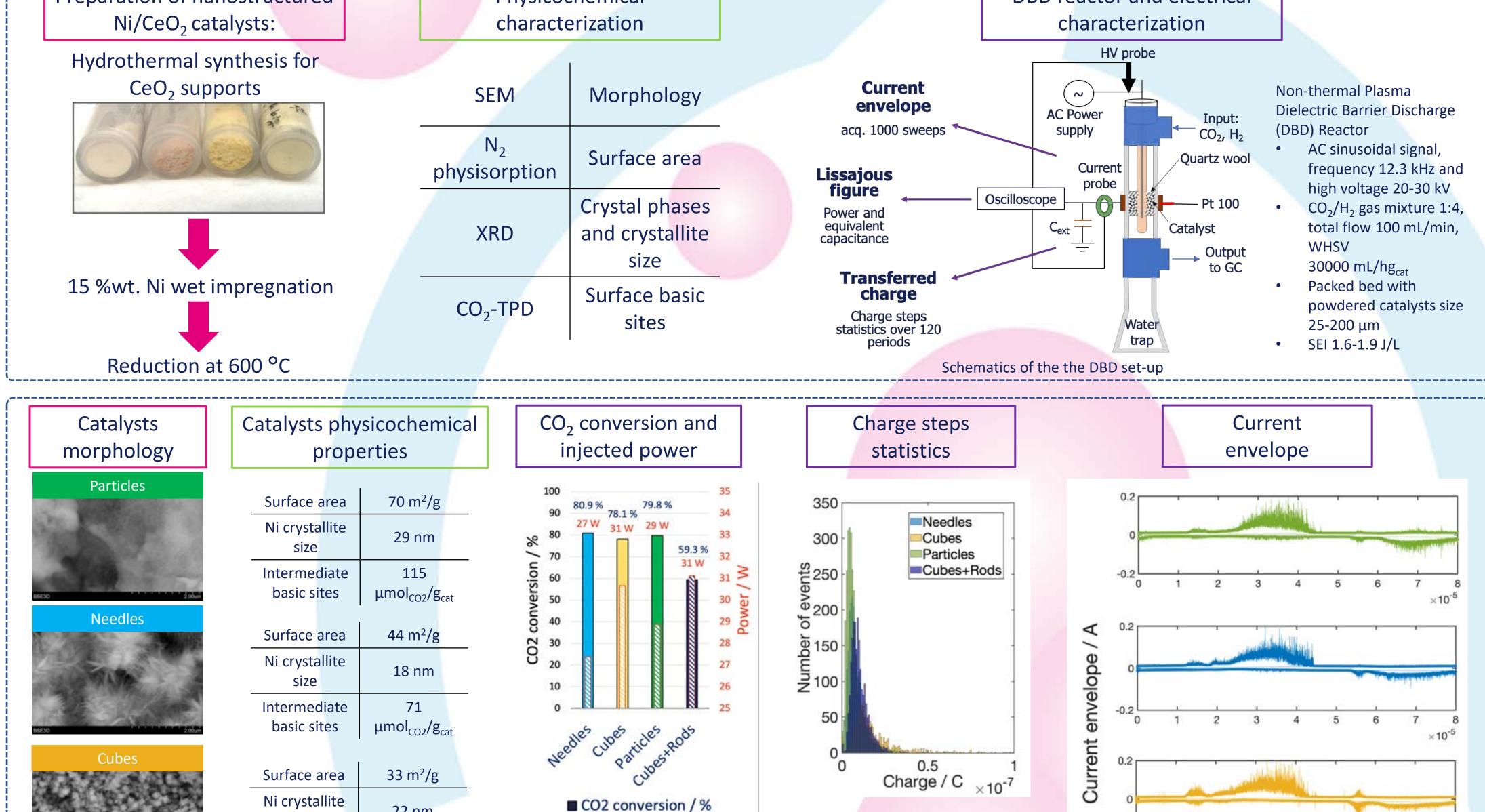

Physicochemical and electrical characterization of CeO₂-based nanostructured catalysts

for plasma-assisted CO₂ methanation in a DBD reactor

<u>Beatrice Musig</u>^{a,b,*}, O. Guaitella^c, M.E. Gálvez^b, M.V. Navarro^a

^a Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
^b Institut d'Alembert, CNRS UMR 7190 Sorbonne Université,Saint-Cyr l'Ecole, France
^c Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau, France
*e-mail: bmusig@icb.csic.es

The use of CO₂ has great potential to complement greenhouse emission reduction strategies and to establish a sustainable and circular economy that exploits CO₂ not as an emission but as a carbon reservoir to produce value-added compounds. Innovative technologies such as non-thermal plasmas are being explored for CO₂ activation and reduction.
The combination of plasma and catalysis for the conversion of CO₂ allows the direct application of renewable electricity in an efficient way. Its application in the catalytic methanation of CO₂ takes advantage of the synergy between the ionized species in the plasma and their contact with the catalytic material to favour the reaction.



Closed carbon cycle: CO₂ capture and utilization using renewable energy sources to produce chemicals and fuels. Credits: Carolina Garcia

Preparation of nanostructured

Physicochemical

DBD reactor and electrical

HISECOMP 200-M	size	22 nm	S Power / W				
	Intermediate basic sites	112 μmol _{CO2} /g _{cat}		C _{equivalent} (pF)		Q half cycle (10 ⁻⁷ C)	-0.2 0 1 2 3 4 5 6 7 8 ×10 ⁻⁵
Cubes + Rods	Surface area	Surface area 8 m²/g Ni cystallite size 30 nm	Particles	14.5	Particles	1.8	0.2
			Needles	12.9	Needles	1.6	
			Cubes	15.1	Cubes	2.1	
	Intermediate basic sites	6 μmol _{co2} /g _{cat}	Cubes+Rods	16.3	Cubes+Rods	1.8	-0.2 0 1 2 3 4 5 6 7 8 Time / s ×10 ⁻⁵

A clear relation between physicochemical properties and the activity in plasma-assisted CO₂ methanation is established: the material with the largest structures, low surface area and poor basicity does not reach high conversion above 70 % at ~30 W.

> Different charge transfer behaviours are observed with different packing materials.

For materials with similar physicochemical properties: low C equivalent is linked with low Q half cycle and with an enhanced efficiency of the catalysts (this is the case of the catalyst with needles morphology with 80.9 % conversion at 27 W).

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813393. The authors would like to acknowledge the Departamento de Ciencia, Universidad y Sociedad del Conociemiento of the Gobierno de Aragón for the project No LMP151 21.

