Insight into the Mechanism of Plasma-Catalytic CO₂ Hydrogenation into Methanol over Supported Cu and Cu/Zn Catalysts

Yuxiang Cai^{1,2}, Xin Tu^{1,*}, Annemie Bogaerts^{2,*}

Keywords: Plasma catalysis, CO₂ Hydrogenation, Methanol synthesis, Density Functional Theory, Cu-based Catalyst

ABSTRACT

While interest in plasma-catalytic CO_2 hydrogenation for the synthesis of methanol is growing rapidly, the fundamental understanding of the reaction process is still lacking. We report a combined experimental/computational analysis of plasma CO_2 hydrogenation into CH₃OH over Cu/SiO₂ and Cu-Zn/SiO₂ catalysts. Our experimental results reveal a synergistic effect between the Cu/SiO_2 catalyst and the CO_2/H_2 plasma, with a CO_2 conversion of 27.5% over the Cu/SiO₂ catalyst and a CH₃OH selectivity of 22.8%, which rises to 34.5% when the Zn promoter is introduced. Furthermore, the energy consumption for CH₃OH generation was around 20 times less than that for the plasma alone system. We performed density functional theory (DFT) calculations on a Cu and Cu/Zn alloy model and discovered that the Cu and Zn promoter's interfacial sites have a dual function synergy: they not only activate the CO₂ molecules but also significantly adsorb critical intermediates, thereby promoting further hydrogenation of CO_2 molecules. Reactive plasma species can control the catalyst surface reactions via the Eley-Rideal (E-R) mechanism, accelerating the hydrogenation process and promoting the formation of critical intermediates. Through competitive adsorption on the Cu/Zn surface, plasma gas-phase radicals induce CH₃OH desorption. This study offers new insights into CO_2 hydrogenation via plasma catalysis and provides inspiration for the plasma-catalytic conversion of virous other small molecules (CH₄, N₂, CO, etc.) using Cu-based catalysts.

^{*}Corresponding author: <u>xintu@liverpool.ac.uk</u>; annemie.bogaerts@uantwerpen.be

 $^{^{\}rm 1}$ Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK

² Research Group PLASMANT, Department of Chemistry, University of Antwerp, Wilrijk-Antwerp BE-2610, Belgium;