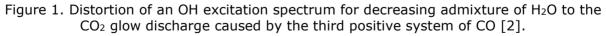

Think Inside the (Black)Box - Insights into the influence of water on the plasma conversion of CO₂ by in situ investigations


Maik Budde^{1,2,*}, Luca Matteo Martini³, Matteo Ceppelli³, Sara Quercetti³, Richard Engeln¹

Keywords: CO₂ plasma conversion, water admixture, in situ studies **Topic number:** 3

ABSTRACT

A critical inspection of CO₂ plasma conversion research nowadays reveals that too often the community is sitting on the fence. On the one hand, many studies focus on pure CO_2 thereby neglecting the presence of impurities. On the other hand, the plasma is regularly treated like a black box that turns an input of CO₂ into products like CO and that is solely controlled by outer parameters like power as if the industrial stage was already reached. However, sophisticated process optimization is only possible from the groundwork of fundamental understanding obtained from experimental or modelling in situ investigation. To shrink this gap, in situ laser-spectroscopic investigations of the influence of water, an omnipresent impurity, on the conversion of CO_2 are presented. Particularly, OH laser-induced fluorescence (LIF) spectroscopy measurements in a pulsed DC CO₂-H₂O glow discharge at 6.67mbar are conducted. The hydroxyl radical influences the chemistry in the plasma due to its high reactivity but can also serve as probe molecule of the conversion process. With a new suggested calibration method absolute OH number densities in the order of 10^{18} m⁻³ are presented in this environment, for the first time to the best of our knowledge, together with the CO_2 conversion fraction [1]. Furthermore, a potential difficulty, namely the spectral overlap with excited CO, is uncovered and resolved through proposition of a new excitation scheme [2]. These results will prove valuable in plasma kinetic modelling.

 $^{^{\}rm 1}$ Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

^{*} Corresponding author m.budde@tue.nl

² Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico,

Universidade de Lisboa, Portugal

³ Dipartimento di Fisica Università di Trento, Via Sommarive 14, 38123 Povo-Trento, Italy

- Budde et al. 2022, Plasma Sources Sci. Technol., Submitted for publication
 Budde et al. 2022, Appl. Spec., Accepted for publication

